Overzicht van verstoven metaalpoeder
Verstoven metaalpoeder is een vorm van metaal die geproduceerd wordt door gesmolten metaal te verstuiven tot zeer fijne druppeltjes. De druppeltjes stollen snel tot poederdeeltjes in de vorm van bolletjes of onregelmatige korrels.
Verstoven metaalpoeders hebben voordelen ten opzichte van andere vormen van metaalpoeders vanwege hun fijne korrelstructuur en uniforme deeltjesvorm. Ze worden veel gebruikt in de verwerkende industrie met toepassingen zoals:
Belangrijkste details over verstoven metaalpoeder
- Geproduceerd door gesmolten metaal te verstuiven in fijne druppeltjes die stollen tot poeder.
- Deeltjes zijn kleine bolletjes of onregelmatige korrels in het micrometergebied
- Uniforme deeltjesgrootte en -vorm in vergelijking met andere methoden voor metaalpoederproductie
- Fijne korrelstructuur verbetert eigenschappen zoals sterkte en corrosiebestendigheid
- Veel voorkomende onedele metalen zijn ijzer, koper, aluminium, nikkel, kobalt
Soorten verstuivingsprocessen
Er zijn twee hoofdtypen verstuivingsprocessen die gebruikt worden om geatomiseerd metaalpoeder commercieel te produceren:
Luchtverneveling
- Stroom gesmolten metaal wordt in druppels gebroken door lucht onder hoge druk of inert gas
- Produceert poeders met een deeltjesgrootte van 5-250 micron
- Lagere productiesnelheid maar in staat om fijnere poeders te maken
- Onregelmatige deeltjesvormen zoals ellipsoïden
Waterverneveling
- Gesmolten metaalstroom valt uiteen door water onder hoge druk
- Grotere deeltjes van 50-1000 micron
- Hogere productiesnelheid door snellere warmteoverdracht
- Sferische deeltjesmorfologie
| Proces | Deeltjesgrootte | Productie | Deeltjesvorm |
|---|---|---|---|
| Luchtverneveling | 5-250 micron | Lager | Onregelmatig |
| Waterverneveling | 50-1000 micron | Hoger | Bolvormig |

Kenmerken van verstoven metaalpoeders
Verstoven metaalpoeders hebben unieke eigenschappen die ze geschikt maken voor productietoepassingen:
Deeltjesgrootteverdeling
- Smalle verdeling met de meerderheid van de deeltjes in het micrometerbereik
- Geregeld door verstuivingsparameters zoals gasstroom en druk
- Fijnere deeltjes hebben een hogere oppervlakte-volumeverhouding
Deeltjesvorm
- Bolvormige of afgeronde onregelmatige vormen
- Beïnvloedt de poederstroom en verpakkingsdichtheid
- Meer bolvormige deeltjes hebben een betere vloeibaarheid
Puurheid
- Hoge zuiverheid met laag zuurstof- en stikstofgehalte
- Vermijd vervuiling door verstuivingsmedium
- Cruciaal voor metallurgische eigenschappen
Dikte
- Dichtbij theoretische dichtheid voor de meeste metalen
- De porositeit hangt af van de stolsnelheid
- Dichtere deeltjes verbeteren verdichting en sinteren
| Kenmerkend | Beschrijving |
|---|---|
| Deeltjesgrootteverdeling | Smal, micron-bereik |
| Deeltjesvorm | Bolvormig of afgerond onregelmatig |
| Puurheid | Hoog, laag zuurstof/stikstofgehalte |
| Dikte | Dichtbij theoretische dichtheid |
Toepassingen en gebruik van verstoven metaalpoeders
Verstoven metaalpoeders worden vanwege hun eigenschappen en kwaliteit overal in de productie-industrie gebruikt:
Poeder-Metallurgie
- Pers- en sinterproces om afgewerkte onderdelen te produceren
- Hoge zuiverheid geeft betere mechanische eigenschappen
- Uniforme deeltjesgrootte verbetert verdichting
Productie van metaaladditieven
- Gebruikt als grondstof voor 3D printmethodes zoals selectief lasersinteren
- Bolvorm zorgt voor betere doorstroming van het poeder
- Fijn formaat maakt afdrukken met zeer hoge resolutie mogelijk
Oppervlaktecoatings
- Thermisch spuiten om dikke coatings op oppervlakken aan te brengen
- Kleine deeltjesgrootte voor uniforme coating
- Oxide-free surface improves coating adhesion
Brazing Filler Metals
- Joining of metals by capillary flow of filler powder
- Controlled particle size prevents clogging
- Low oxygen content prevents defects
| Sollicitatie | Voordelen |
|---|---|
| Poeder-Metallurgie | High purity, uniform size |
| Additieve productie | Spherical shape, fine size |
| Oppervlaktecoatings | Small size, oxide-free |
| Brazing fillers | Controlled size, low oxygen |
Specificaties en normen
Atomized metal powders must meet certain specifications and standards for quality control:
Deeltjesgrootteverdeling
- Typically given by D values (diameter below which X% particles exist)
- D10, D50, D90 values define spread of distribution
- D50 is median particle size
Schijnbare dichtheid
- Measures powder packing density and flowability
- Higher density indicates more spherical particles
- Reported as g/cm3 or % of theoretical density
Hall Flowrate
- Time for 50g powder to flow through standardized funnel
- Lower time indicates better flowability
- Below 25 seconds is good flow
Sieve Analysis
- Fraction of powder retained on specific mesh sizes
- Indicates spread of particle sizes
- Performed from 325 mesh down to pan
Scheikunde
- Base metal purity by ICP analysis
- Oxygen and nitrogen levels by inert gas fusion
| Parameter | Typische specificatie | Test methode |
|---|---|---|
| Deeltjesgrootteverdeling | D10, D50, D90 | Laserdiffractie |
| Schijnbare dichtheid | g/cm3 or % theoretical | Hall-debietmeter |
| Hall flowrate | Seconds for 50g to flow | ASTM B213 |
| Zeefanalyse | % retained on each mesh | ASTM B214 |
| Scheikunde | Base metal, O, N wt% | ICP, inert gas fusion |
Ontwerp Overwegingen
The atomization process and powder characteristics must be designed appropriately for the intended application:
Atomization Method
- Air or inert gas for finer particles needed in additive manufacturing
- Water atomization for coarser particles suitable for pressing
Deeltjesgrootte
- Finer particles have higher sintering activity but lower flowability
- Larger particles compact better but limit resolution of prints
Deeltjesvorm
- Irregular shapes have higher surface area while spherical improve flowability
- Angular particles provide better mechanical interlocking
Dikte
- Higher density improves compaction and shrinkage control
- Some porosity can help relieve stresses during sintering
Puurheid
- Oxygen and nitrogen levels must be minimized
- Other impurities can affect mechanical properties
| Parameter | Design Guidelines |
|---|---|
| Verstuivingsmethode | Air/gas for fine, water for coarse |
| Deeltjesgrootte | Finer have higher sintering activity |
| Deeltjesvorm | Spherical improve flow, irregular provide interlocking |
| Dikte | Higher density improves compaction |
| Puurheid | Minimize O, N and other impurities |
Installation, Operation, and Maintenance
Proper installation, operation, and maintenance of atomization equipment is critical:
- Installation should be done according to manufacturer specifications with proper utilities and ancillary equipment in place
- Operation procedures must be strictly followed especially for startup, shutdown, and changeovers between alloys
- Critical process parameters like temperature, pressure, flowrates should be continuously monitored and controlled
- Preventative maintenance schedule should be implemented including inspections, replacements of wear parts like nozzles, and overhauls
- Regular cleaning cycles to avoid buildup of material in gas pipes, water lines, crucible, and collection system
- Safety systems must be kept in good working order especially emergency stops, fire detection and suppression
- Training programs for employees should focus on safe handling of molten metal, quality control testing, and troubleshooting procedures
Proper installation, operation, and maintenance will maximize production volume and minimize downtime. This helps improve the productivity, quality, and safety of atomized metal powder production.

Een leverancier van verstoven metaalpoeder kiezen
It is important to select a reputable supplier when purchasing atomized metal powder:
- Experience and technical expertise in atomization process
- Ability to produce a range of alloys, particle sizes and shapes
- Quality control testing meets industry standards
- Reasonable minimum order quantities and lead times
- Inventory of standard powders for quick delivery
- Capability to tailor properties or develop custom alloys
- Understanding of intended application and technical requirements
- Samples available for evaluation prior to purchasing
- Competitive pricing for both high and low volumes
- Location and logistics suitable to meet delivery schedule
- Responsiveness for technical questions and follow-up requests
Choosing a supplier with advanced capabilities and strong customer service will help ensure a consistent and reliable supply of high quality atomized metal powder.
Pros and Cons of Atomized Metal Powder
Atomized metal powder has both advantages and limitations compared to other forms of metal:
Voordelen
- Uniform particle size and shape
- Good flowability due to spherical morphology
- High purity enables great metallurgical properties
- Near theoretical density improves compaction
- Fine microstructure from rapid solidification
- Lower sintering temperature than milled powder
- Used in additive manufacturing and other advanced processes
Beperkingen
- Higher cost compared to milled powder
- Limited alloy availability compared to wrought forms
- Particle size range not suitable for some applications
- Minimum order quantities may be higher
- Lower production rate than mechanical atomization
- Requires handling and safety precautions for fine powder
| Parameter | Voordelen | Beperkingen |
|---|---|---|
| Deeltjeskarakteristieken | Uniform size/shape, good flow | Beperkt maatbereik |
| Puurheid | High purity, fine microstructure | |
| Eigenschappen | High density, low sintering temperature | |
| Productie | Used in AM, advanced processes | Limited alloys, higher cost |
| Behandeling | Requires precautions for fine powder |
Kostenanalyse
Atomized metal powder is more expensive than other metal powder production methods, with pricing dependent on:
- Base metal – more expensive for reactive metals like titanium, tantalum
- Purity – high purity powder commands premium pricing
- Particle size – finer powder is more costly due to lower yield
- Order quantity – prices decrease significantly at higher volumes
- Processing – additional steps like sieving, blending, annealing add cost
Typical pricing ranges:
| Metaal | Deeltjesgrootte | Prijsbereik |
|---|---|---|
| IJzer en staal | 15-150 micron | $1-3 per lb |
| Aluminium | 25-250 micron | $3-8 per lb |
| Koper | 15-120 micron | $6-15 per lb |
| Nikkel legeringen | 10-75 micron | $10-25 per lb |
| Titanium | 45-150 micron | $50-150 per lb |
Pricing also depends on supplier capabilities, raw material costs, and market conditions. Work with qualified suppliers to obtain competitive pricing for your specific material requirements and order volumes.

FAQ
What are the main advantages of atomized metal powder?
The main advantages are uniform particle size and shape, high purity, good flowability, near theoretical density, and fine microstructure. These benefits make atomized powder suitable for additive manufacturing, powder metallurgy, thermal spraying, and other applications.
How is atomized powder different from other metal powder production methods?
Atomized powder has more uniform particle characteristics compared to milled powder. It also has higher purity and density versus electrolytic powder and powder made by chemical reduction. The rapid solidification in atomization also results in finer microstructures.
What precautions are required when handling atomized powder?
Fine metal powders can be a dust explosion hazard. Precautions include grounding and bonding systems, non-sparking tools, dust collection, protective gear for workers, and exclusion of ignition sources. Powders may also require controlled atmospheres and special packaging.
What is the typical particle size range for atomized powder?
Air atomized powder is commonly 5-150 microns while water atomized powder is 50-1000 microns. Size can be controlled by adjusting atomization parameters. Finer sizes have higher surface area while coarser powders compact better.
How is atomized metal powder used in additive manufacturing?
The uniform particle shape allows excellent flowability in powder bed processes like selective laser sintering. The fine particle size enables very high resolution while retaining bulk properties of the alloy. High purity minimizes defects in final parts.
What methods detect impurities in atomized powder?
Chemical analysis using ICP can detect trace levels of impurities. Oxygen and nitrogen content is measured by inert gas fusion analyzers. Sieve analysis determines contamination from oversize particles. SEM and optical microscopy can detect satellite particles.
How does porosity in atomized powder affect properties?
Minimal porosity is desired for good compaction and sintering. But some optimized porosity can help relieve stresses during thermal processing. Post-production annealing can also be used to increase powder density.
Why is high purity important for atomized powder properties?
Impurities like oxygen and nitrogen can significantly degrade mechanical performance and microstructural development. Even ppm levels must be controlled to achieve the best strength, ductility, corrosion resistance in final parts.
What safety equipment is used for molten metal atomization?
Safety gear includes reflective clothing, face shields, heat resistant gloves, metal splash aprons, and leather jackets. Good ventilation is needed to control fumes. Automatic fire suppression systems are also critical.
How often is maintenance required on atomization equipment?
Preventative maintenance should be done at scheduled intervals, such as replacing consumable parts after a certain number of hours of operation. Additional maintenance is required as needed, indicated by process changes, output variations, or component failures.






